Приведены результаты расчета газодинамических ударных волн, возникающих при решении задачи Коши с гладкими периодическими начальными данными, по трем вариантам DG (Discontinuous Galerkin) метода, в котором решение ищется в виде кусочно-линейной разрывной функции. Показано, что DG методы, для монотонизации которых используется ограничитель Кокбурна, имеют приблизительно одинаковую точность в областях влияния ударных волн, в то время как немонотонный DG метод, в котором этот ограничитель не применяется, имеет в этих областях существенно более высокую точность, что позволяет использовать его в качестве базисного метода при построении комбинированной схемы, которая монотонно локализует фронты ударных волн и сохраняет повышенную точность в областях их влияния.
Проведен сравнительный анализ точности численных схем RBM (Rusanov-Burstein-Mirin), CWA (Compact high order Weak Approximation) и A-WENO (Alternative Weighted Essentially Non-Oscillatory) при сквозном расчете газодинамических ударных волн, возникающих при численном моделировании задачи Коши с гладкими периодическими начальными данными. Показано, что при наличии ударных волн схемы RBM и CWA (при построении которых нелинейная коррекция потоков не используется) имеют более высокий порядок интегральной сходимости, что обеспечивает этим схемам существенно более высокую точность (по сравнению со схемой A-WENO) в областях влияния ударных волн, несмотря на заметные нефизические осцилляции на их фронтах. Это позволяет использовать схемы RBM и CWA в качестве базисных при построении комбинированных схем, которые монотонно локализуют фронты ударных волн и одновременно сохраняют повышенную точность в областях их влияния.
Индексирование
Scopus
Crossref
Higher Attestation Commission
At the Ministry of Education and Science of the Russian Federation