Президиум РАНДоклады Российской академии наук. Математика, информатика, процессы управления Doklady Mathematics

  • ISSN (Print) 2686-9543
  • ISSN (Online) 3034-5049

КРАЕВЫЕ ЗАДАЧИ ДЛЯ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ ОПЕРАТОРОВ С ЛИНЕЙНОЙ ЗАВИСИМОСТЬЮ ОТ СПЕКТРАЛЬНОГО ПАРАМЕТРА

Код статьи
10.31857/S2686954324060106-1
DOI
10.31857/S2686954324060106
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 520 / Номер выпуска 1
Страницы
64-69
Аннотация
В работе рассматриваются краевые задачи, порождаемые обыкновенным дифференциальным выражением
Ключевые слова
краевые задачи для обыкновенных дифференциальных уравнений спектральный параметр в граничных условиях регулярные спектральные задачи базис Рисса
Дата публикации
15.02.2024
Год выхода
2024
Всего подписок
0
Всего просмотров
38

Библиография

  1. 1. Капустин Н. Ю., Моисеев Е. И. О спектральных задачах со спектральным параметром в граничномусловии//Дифференциальныеуравнения. 1997. Т. 33. № 1. С. 115–119.
  2. 2. Капустин Н. Ю. Осцилляционные свойства решений одной несамосопряженной спектральной задачи со спектральным параметром в граничном условии // Дифференциальные уравнения. 1999. Т. 35. № 8. С. 1024–1027.
  3. 3. Капустин Н. Ю., Моисеев Е. И. О базисности в пространстве
  4. 4. Капустин‘Н. Ю., Моисеев Е. И. К проблеме сходимости спектральных разложений для одной классической задачи со спектральным параметром в граничном условии // Дифференциальные уравнения. 2001. Т. 37. № 12. С. 1599–1604.
  5. 5. Керимов Н. Б., Алиев З. С. Базисные свойства одной спектральной задачи со спектральным параметром в граничном условии // Математический сборник. 2006. Т. 197. № 10. С. 65–86.
  6. 6. Kerimov N. B., Aliev Z. S. On the Basis Property of the System of Eigenfunctionsof a Spectral Problem with Spectral Parameterin the Boundary Condition // Differential Equations. 2007. V. 43. P. 905–915.
  7. 7. Алиев З. С., Керимов Н. Б., Мехрабов В. А. О сходимости разложений по собственным функциям одной краевой задачи со спектральным параметром в граничных условиях // Дифференциальные уравнения. 2020. T. 56. № 2. С. 147–161.
  8. 8. Шкаликов А. А. О базисных свойствах корневых функций дифференциальных операторов, содержащих спектральный параметр в краевых условиях // Дифференциальные уравнения. 2019. Т. 55. № 5. С. 647–659.
  9. 9. Шкаликов А. А. Краевые задачи для обыкновенных дифференциальных уравнений с параметром в граничных условиях // Тр.семинара им. И. Г. Петровского. 1983. Т. 9. С. 190–229.
  10. 10. Поляков Д. М. Спектральные свойства двучленного оператора четвертого порядка со спектральным параметром в граничном условии // Сибирский математический журнал. 2023. T. 64. № 3. С. 611–634.
  11. 11. Bondarenko N. P., Chitorkin E. E. Inverse SturmLiouville problem with spectral parameter in the boundary conditions // Mathematics. 2023. V. 11. № 5.
  12. 12. Guliyev N. J. Essentially isospectral transformations and their applications // Annali di Matematica Pura ed Applicata. 2020. V. 199. № 4. С. 1621–1648.
  13. 13. Мирзоев К. А., Шкаликов А. А. Дифференциальные операторы четного порядка с коэффициентами-распределениями // Математические заметки. 2016. Т. 99. № 5. С. 788–793.
  14. 14. Birkhoff G. D. On the asymptotic character of the solution of the certain linear difftrential equations containing a parameter // Trans. Amer. Math. Soc. 1908. V. 9. P. 219–231.
  15. 15. Тамаркин Я. Д. О некоторых общих задачах теории обыкновенных дифференциальных уравнений и о разложении произвольных функций в ряды. Петроград: тип. М. П. Фроловой, 1917.
  16. 16. Наймарк М. А. Линейные дифференциальные операторы. М.: Наука, 1967.
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека