Президиум РАНДоклады Российской академии наук. Математика, информатика, процессы управления Doklady Mathematics

  • ISSN (Print) 2686-9543
  • ISSN (Online) 3034-5049

Численно-аналитическое решение уравнений Брента

Код статьи
10.31857/S2686954324040056-1
DOI
10.31857/S2686954324040056
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 518 / Номер выпуска 1
Страницы
29-34
Аннотация
Предлагается параметризация канонических разложений тензоров матричного произведения с многократно меньшим (по сравнению со стандартными уравнениями Брента) числом переменных. Последние определяются численно с использованием итерационного метода решения задачи нелинейных наименьших квадратов. Получены более быстрые по сравнению с известными алгоритмы перемножения двух 4 × 4-матриц за 48 умножений и 2 × 4-матрицы на 4 × 5-матрицу за 32 умножения.
Ключевые слова
быстрое умножение матриц алгоритм Штрассена уравнения Брента
Дата публикации
15.06.2024
Год выхода
2024
Всего подписок
0
Всего просмотров
38

Библиография

  1. 1. Brent R.P. Algorithms for matrix multiplication. (Report No. STAN-CS-70-157). Stanford Univ. CA Dept. of Computer Science, 1970, 58p.
  2. 2. Strassen V. Gaussian elimination is not optimal // Numer. Math. 1969. V. 13. № 4. P. 354–356.
  3. 3. Смирнов А.В. О билинейной сложности и практических алгоритмах умножения матриц // ЖВМ и МФ. 2013. Т. 53. № 12. С. 1970–1984.
  4. 4. Beniamini G. et al., Sparsifying the operators of fast matrix multiplication algorithms. arXiv preprint arXiv:2008.03759 (2020) https://arxiv.org/pdf/2008.03759.pdf
  5. 5. Ballard G., Ikenmeyer C., Landsberg J.M., Ryder N. The geometry of rank decompositions of matrix multiplication II: 3×3 matrices // J. of Pure and Applied Algebra. 2019. V. 223. № 8. P. 3205–3224.
  6. 6. Laderman J.D. A noncommutative algorithm for multiplying 3x3 matrices using 23 multiplications // Bull. Amer. Math. Soc. 1976. V. 82. № 1. P. 126–128.
  7. 7. Kaporin I. A derivative-free nonlinear least squares solver. In: Olenev N.N., Evtushenko Y.G., Jacimovic M., Khachay M., Malkova V. (eds.) Optimization and Applications. OPTIMA 2021. Lecture Notes in Computer Science, V. 13078. P. 217–230. Springer, Cham, 2021. https://doi.org/10.1007/978-3-030-91059-4_16
  8. 8. Kaporin I. Verifying the correctness of the (4,4,4;48) matrix multiplication scheme with complex coefficients exact up to the floating point tolerance // 2024. URL: https://cloud.mail.ru/public/Yfij/ErDxopqBh
  9. 9. Hopcroft J.E., Kerr L.R. On minimizing the number of multiplications necessary for matrix multiplication // SIAM Journal on Appl. Math. 1971. V. 20. № 1 P. 30–36.
  10. 10. Berger G.O., Absil P.A., De Lathauwer L., Jungers R.M., Van Barel M. Equivalent polyadic decompositions of matrix multiplication tensors // J. of Comput. and Appl. Math. 2022. V. 406. P. 113941. https://doi.org/10.1016/j.cam.2021.113941
  11. 11. Fawzi A. et al. Discovering faster matrix multiplication algorithms with reinforcement learning // Nature. 2022. V. 610. № 7930. P. 47–53.
  12. 12. Li X., Zhang L., Ke Y. Deflation conjecture and local dimensions of Brent equations // arXiv preprint arXiv:2310.11686. 2023 Oct 18.
  13. 13. Ballard G., Weissenberger J., Zhang L. Accelerating neural network training using arbitrary precision approximating matrix multiplication algorithms // 50th International Conference on Parallel Processing Workshop 2021 Aug 9. P. 1–8. https://doi.org/10.1145/3458744.3474050
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека