RAS PresidiumДоклады Российской академии наук. Математика, информатика, процессы управления Doklady Mathematics

  • ISSN (Print) 2686-9543
  • ISSN (Online) 3034-5049

Semi-analytical solution of Brent equations

PII
10.31857/S2686954324040056-1
DOI
10.31857/S2686954324040056
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 518 / Issue number 1
Pages
29-34
Abstract
A parametrization of Brent equations is proposed which admit for a several times reduction of the number of unknowns and equations. The arising equations are solved numerically, and for the resulting fast matrix multiplication algorithms many known values of rank are reproduced and even improved, in particular, the designs (4,4,4;48) and (2,4,5;32) are found.
Keywords
быстрое умножение матриц алгоритм Штрассена уравнения Брента
Date of publication
15.06.2024
Year of publication
2024
Number of purchasers
0
Views
37

References

  1. 1. Brent R.P. Algorithms for matrix multiplication. (Report No. STAN-CS-70-157). Stanford Univ. CA Dept. of Computer Science, 1970, 58p.
  2. 2. Strassen V. Gaussian elimination is not optimal // Numer. Math. 1969. V. 13. № 4. P. 354–356.
  3. 3. Смирнов А.В. О билинейной сложности и практических алгоритмах умножения матриц // ЖВМ и МФ. 2013. Т. 53. № 12. С. 1970–1984.
  4. 4. Beniamini G. et al., Sparsifying the operators of fast matrix multiplication algorithms. arXiv preprint arXiv:2008.03759 (2020) https://arxiv.org/pdf/2008.03759.pdf
  5. 5. Ballard G., Ikenmeyer C., Landsberg J.M., Ryder N. The geometry of rank decompositions of matrix multiplication II: 3×3 matrices // J. of Pure and Applied Algebra. 2019. V. 223. № 8. P. 3205–3224.
  6. 6. Laderman J.D. A noncommutative algorithm for multiplying 3x3 matrices using 23 multiplications // Bull. Amer. Math. Soc. 1976. V. 82. № 1. P. 126–128.
  7. 7. Kaporin I. A derivative-free nonlinear least squares solver. In: Olenev N.N., Evtushenko Y.G., Jacimovic M., Khachay M., Malkova V. (eds.) Optimization and Applications. OPTIMA 2021. Lecture Notes in Computer Science, V. 13078. P. 217–230. Springer, Cham, 2021. https://doi.org/10.1007/978-3-030-91059-4_16
  8. 8. Kaporin I. Verifying the correctness of the (4,4,4;48) matrix multiplication scheme with complex coefficients exact up to the floating point tolerance // 2024. URL: https://cloud.mail.ru/public/Yfij/ErDxopqBh
  9. 9. Hopcroft J.E., Kerr L.R. On minimizing the number of multiplications necessary for matrix multiplication // SIAM Journal on Appl. Math. 1971. V. 20. № 1 P. 30–36.
  10. 10. Berger G.O., Absil P.A., De Lathauwer L., Jungers R.M., Van Barel M. Equivalent polyadic decompositions of matrix multiplication tensors // J. of Comput. and Appl. Math. 2022. V. 406. P. 113941. https://doi.org/10.1016/j.cam.2021.113941
  11. 11. Fawzi A. et al. Discovering faster matrix multiplication algorithms with reinforcement learning // Nature. 2022. V. 610. № 7930. P. 47–53.
  12. 12. Li X., Zhang L., Ke Y. Deflation conjecture and local dimensions of Brent equations // arXiv preprint arXiv:2310.11686. 2023 Oct 18.
  13. 13. Ballard G., Weissenberger J., Zhang L. Accelerating neural network training using arbitrary precision approximating matrix multiplication algorithms // 50th International Conference on Parallel Processing Workshop 2021 Aug 9. P. 1–8. https://doi.org/10.1145/3458744.3474050
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library