RAS PresidiumДоклады Российской академии наук. Математика, информатика, процессы управления Doklady Mathematics

  • ISSN (Print) 2686-9543
  • ISSN (Online) 3034-5049

On the construction of an artificial neural network for solving a system of equations Navier–Stokes in the case of incompressible fluid

PII
10.31857/S2686954324030194-1
DOI
10.31857/S2686954324030194
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 517 / Issue number 1
Pages
115-119
Abstract
The tasks of analyzing and visualizing the dynamics of a viscous incompressible fluid in conditions of complex flow geometry based on traditional grid and projection methods are associated with significant requirements for computer performance to achieve the set goals. To reduce the computational load in solving this class of problems, algorithms for constructing artificial neural networks (ANNs) can be used, using exact solutions of the Navier–Stokes equation system on a given set of spatial regions as training sets. An ANN is implemented to construct flows in areas that are complexes made up of training sets of standard axisymmetric regions (cylinders, balls, etc.). To reduce the amount of calculations in the case of 3-D problems, invariant flow manifolds with smaller dimensions are used. This allows you to identify the detailed structure of solutions. It is established that the typical invariant regions of such flows are rotation figures, in particular, homeomorphic torus, forming the structure of a topological bundle, for example, in a ball, a cylinder and in general complexes composed of such figures. The structures of the flows obtained by approximation by the simplest 3-D vortex unsteady flows are investigated. Classes of exact solutions of the Navier–Stokes system for an incompressible fluid in bounded regions of space based on the superposition of the above topological bundles are distinguished. Comparative computational experiments indicate a significant acceleration of computational work in the case of using the proposed class of ANNs, which allows the use of computing equipment with low performance.
Keywords
уравнения Навье–Стокса вихревые осесимметричные течения несжимаемая жидкость искусственные нейронные сети аппроксимация решений
Date of publication
15.06.2024
Year of publication
2024
Number of purchasers
0
Views
45

References

  1. 1. Бетелин В.Б., Галкин В.А. Математические задачи, связанные с искусственным интеллектом и искусственными нейронными сетями // Успехи кибернетики. 2021. Т. 2. № 4. С. 6–14. https://doi.org/10.51790/2712-9942-2021-2-4-1.
  2. 2. Galkin V.A. On a class of exact solutions to the incompressible Navier–Stokes system in a ball and a spherical layer// Comput. Math. Math. Phys. 2023. V. 63. P. 1064–1069. https://doi.org/10.1134/s0965542523060088
  3. 3. Galkin V.A., Dubovik A.O. On One Class of Exact Solutions of the Navier–Stokes System of Equations for an Incompressible Fluid // Math. Models and Comp. Simulations. 2023. V. 15. № 1. P. S78–S85. ISSN 2070-0482. © Pleiades Publishing, Ltd., 2023. Галкин В.А., Дубовик А.О. Об одном классе точных решений системы уравнений Навье–Стокса для несжимаемой жидкости // Математическое моделирование. 2023. Т. 35. № 8. С. 3–13.
  4. 4. Бетелин В.Б., Галкин В.А. Математические и вычислительные проблемы, связанные с образованием структур в сложных системах // Компьютерные исследования и моделирование. 2022. Т. 14. Вып. 4. С. 805–815.
  5. 5. Галкин В.А. Теория функциональных решений квазилинейных систем законов сохранения // Труды семинара имени И.Г. Петровского. 2000. Вып. 20. С. 81–120.
  6. 6. Galkin V.A. Background of mathematical models, based on conservation laws systems // Industrial Mathematics. New Delhi, India: Narosa Publishing House, 2006. P. 159–178.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library