- PII
- 10.31857/S2686954324030172-1
- DOI
- 10.31857/S2686954324030172
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 517 / Issue number 1
- Pages
- 101-108
- Abstract
- The work is devoted to the logistic equation with delay and diffusion with non-classical boundary conditions. The stability of a nontrivial equilibrium state is investigated, and the resulting bifurcations are studied numerically.
- Keywords
- логистическое уравнение запаздывание диффузия неклассические краевые условия устойчивость
- Date of publication
- 15.06.2024
- Year of publication
- 2024
- Number of purchasers
- 0
- Views
- 47
References
- 1. Wu J. Theory and applications of partial functional differential equations. New York: Springer-Verlag, 1996.
- 2. Cushing J. M. Integrodifferential equations and delay models in population dynamics. Springer, 1977.
- 3. Kuang Y. Delay differential equations: with applications in population dynamics. Academic Press, 1993.
- 4. Murray J.D. Mathematical biology II: Spatial models and biomedical applications. New York : Springer, 2001. V. 3.
- 5. Gourley S.A., So J.W-H., Wu J.H. Nonlocality of reaction-diffusion equations induced by delay: biological modeling and nonlinear dynamics // Journal of Mathematical Sciences. 2004. V. 124. P. 5119–5153.
- 6. Кащенко С.А., Логинов Д.О. Бифуркации при варьировании граничных условий в логистическом уравнении с запаздыванием и диффузией // Математические заметки. 2019. Т. 106. № 1. С. 138–143.
- 7. Wright E.M. A non-linear difference-differential equation // J. fur die reine und angewandte Math. (Crelles Journal). 1955. V. 194. P. 66–87.
- 8. Кащенко С.А. Динамика моделей на основе логистического уравнения с запаздыванием. М.: КРАСАНД, 2020.
- 9. Кащенко С.А. , Толбей А.О. Бифуркации в логистическом уравнении с диффузией и запаздыванием в граничном условии // Матем. заметки. 2023. Т. 113. № 6. С. 940–944.
- 10. Rudyi A.S. Theoretical fundamentals of the method for thermal diffusivity measurements from auto-oscillation parameters in a system with a thermal feedback // International J. of Thermophysics. 1993. V. 14. P. 159–172.