RAS PresidiumДоклады Российской академии наук. Математика, информатика, процессы управления Doklady Mathematics

  • ISSN (Print) 2686-9543
  • ISSN (Online) 3034-5049

Stability of solutions to the logistic equation with delay, diffusion and nonclassical boundary conditions

PII
10.31857/S2686954324030172-1
DOI
10.31857/S2686954324030172
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 517 / Issue number 1
Pages
101-108
Abstract
The work is devoted to the logistic equation with delay and diffusion with non-classical boundary conditions. The stability of a nontrivial equilibrium state is investigated, and the resulting bifurcations are studied numerically.
Keywords
логистическое уравнение запаздывание диффузия неклассические краевые условия устойчивость
Date of publication
15.06.2024
Year of publication
2024
Number of purchasers
0
Views
47

References

  1. 1. Wu J. Theory and applications of partial functional differential equations. New York: Springer-Verlag, 1996.
  2. 2. Cushing J. M. Integrodifferential equations and delay models in population dynamics. Springer, 1977.
  3. 3. Kuang Y. Delay differential equations: with applications in population dynamics. Academic Press, 1993.
  4. 4. Murray J.D. Mathematical biology II: Spatial models and biomedical applications. New York : Springer, 2001. V. 3.
  5. 5. Gourley S.A., So J.W-H., Wu J.H. Nonlocality of reaction-diffusion equations induced by delay: biological modeling and nonlinear dynamics // Journal of Mathematical Sciences. 2004. V. 124. P. 5119–5153.
  6. 6. Кащенко С.А., Логинов Д.О. Бифуркации при варьировании граничных условий в логистическом уравнении с запаздыванием и диффузией // Математические заметки. 2019. Т. 106. № 1. С. 138–143.
  7. 7. Wright E.M. A non-linear difference-differential equation // J. fur die reine und angewandte Math. (Crelles Journal). 1955. V. 194. P. 66–87.
  8. 8. Кащенко С.А. Динамика моделей на основе логистического уравнения с запаздыванием. М.: КРАСАНД, 2020.
  9. 9. Кащенко С.А. , Толбей А.О. Бифуркации в логистическом уравнении с диффузией и запаздыванием в граничном условии // Матем. заметки. 2023. Т. 113. № 6. С. 940–944.
  10. 10. Rudyi A.S. Theoretical fundamentals of the method for thermal diffusivity measurements from auto-oscillation parameters in a system with a thermal feedback // International J. of Thermophysics. 1993. V. 14. P. 159–172.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library