RAS PresidiumДоклады Российской академии наук. Математика, информатика, процессы управления Doklady Mathematics

  • ISSN (Print) 2686-9543
  • ISSN (Online) 3034-5049

Upwind bicompact schemes for hyperbolic conservation laws

PII
10.31857/S2686954324030097-1
DOI
10.31857/S2686954324030097
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 517 / Issue number 1
Pages
50-56
Abstract
For the first time, upwind bicompact schemes of third order approximation in space are presented. A formula is obtained for the transition factor of an arbitrary fully discrete bicompact scheme with integration in time by a Runge–Kutta method. Stability and monotonicity of the first-order in time scheme are investigated, dissipative and dispersion properties of the third-order in time scheme are analyzed. Advantages of the new schemes relative to their centered counterparts are demonstrated.
Keywords
гиперболические уравнения противопоточные схемы высокоточные схемы компактные схемы бикомпактные схемы
Date of publication
17.09.2025
Year of publication
2025
Number of purchasers
0
Views
12

References

  1. 1. Рогов Б.В., Михайловская М.Н. О сходимости компактных разностных схем // Матем. моделирование. 2008. Т. 20. № 1. С. 99–116.
  2. 2. Рогов Б.В., Михайловская М.Н. Монотонные бикомпактные схемы для линейного уравнения переноса // Матем. моделирование. 2011. Т. 23. № 6. С. 98–110.
  3. 3. Chikitkin A.V., Rogov B.V., Utyuzhnikov S.V. High-order accurate monotone compact running scheme for multidimensional hyperbolic equations // Appl. Numer. Math. 2015. V. 93. P. 150–163.
  4. 4. Bragin M.D., Rogov B.V. Conservative limiting method for high-order bicompact schemes as applied to systems of hyperbolic equations // Applied Numerical Mathematics. 2020. V. 151. P. 229–245.
  5. 5. Брагин М.Д. Бикомпактные схемы для уравнений Навье-Стокса в случае сжимаемой жидкости // Докл. АН. 2023. Т. 509. С. 17–22.
  6. 6. Чикиткин А.В. Бикомпактные схемы для многомерных гиперболических уравнений и их эффективная реализация: дис. … канд. физ.-мат. наук: 01.01.07. М.: МФТИ(ГУ), 2016. 89 с.
  7. 7. Толстых А.И. Компактные разностные схемы и их применение в задачах аэрогидродинамики. М.: Наука, 1990. 230 c.
  8. 8. Lele S.K. Compact finite difference schemes with spectral-like resolution // J. Comput. Phys. 1992. V. 103. № 1. P. 16–42.
  9. 9. Rogov B.V. Dispersive and dissipative properties of the fully discrete bicompact schemes of the fourth order of spatial approximation for hyperbolic equations // Appl. Numer. Math. 2019. V. 139. P. 136–155.
  10. 10. Chikitkin A.V., Rogov B.V. Family of central bicompact schemes with spectral resolution property for hyperbolic equations // Appl. Numer. Math. 2019. V. 142. P. 151–170.
  11. 11. Брагин М.Д., Рогов Б.В. О единственности высокоточной бикомпактной схемы для квазилинейных уравнений гиперболического типа // Ж. вычисл. матем. и матем. физ. 2014. Т. 54. № 5. С. 815–820.
  12. 12. Хайрер Э., Нëрсетт С., Ваннер Г. Решение обыкновенных дифференциальных уравнений. Нежесткие задачи: пер. с англ. М.: Мир, 1990. 512 c.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library