- PII
- 10.31857/S2686954324030097-1
- DOI
- 10.31857/S2686954324030097
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 517 / Issue number 1
- Pages
- 50-56
- Abstract
- For the first time, upwind bicompact schemes of third order approximation in space are presented. A formula is obtained for the transition factor of an arbitrary fully discrete bicompact scheme with integration in time by a Runge–Kutta method. Stability and monotonicity of the first-order in time scheme are investigated, dissipative and dispersion properties of the third-order in time scheme are analyzed. Advantages of the new schemes relative to their centered counterparts are demonstrated.
- Keywords
- гиперболические уравнения противопоточные схемы высокоточные схемы компактные схемы бикомпактные схемы
- Date of publication
- 17.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 12
References
- 1. Рогов Б.В., Михайловская М.Н. О сходимости компактных разностных схем // Матем. моделирование. 2008. Т. 20. № 1. С. 99–116.
- 2. Рогов Б.В., Михайловская М.Н. Монотонные бикомпактные схемы для линейного уравнения переноса // Матем. моделирование. 2011. Т. 23. № 6. С. 98–110.
- 3. Chikitkin A.V., Rogov B.V., Utyuzhnikov S.V. High-order accurate monotone compact running scheme for multidimensional hyperbolic equations // Appl. Numer. Math. 2015. V. 93. P. 150–163.
- 4. Bragin M.D., Rogov B.V. Conservative limiting method for high-order bicompact schemes as applied to systems of hyperbolic equations // Applied Numerical Mathematics. 2020. V. 151. P. 229–245.
- 5. Брагин М.Д. Бикомпактные схемы для уравнений Навье-Стокса в случае сжимаемой жидкости // Докл. АН. 2023. Т. 509. С. 17–22.
- 6. Чикиткин А.В. Бикомпактные схемы для многомерных гиперболических уравнений и их эффективная реализация: дис. … канд. физ.-мат. наук: 01.01.07. М.: МФТИ(ГУ), 2016. 89 с.
- 7. Толстых А.И. Компактные разностные схемы и их применение в задачах аэрогидродинамики. М.: Наука, 1990. 230 c.
- 8. Lele S.K. Compact finite difference schemes with spectral-like resolution // J. Comput. Phys. 1992. V. 103. № 1. P. 16–42.
- 9. Rogov B.V. Dispersive and dissipative properties of the fully discrete bicompact schemes of the fourth order of spatial approximation for hyperbolic equations // Appl. Numer. Math. 2019. V. 139. P. 136–155.
- 10. Chikitkin A.V., Rogov B.V. Family of central bicompact schemes with spectral resolution property for hyperbolic equations // Appl. Numer. Math. 2019. V. 142. P. 151–170.
- 11. Брагин М.Д., Рогов Б.В. О единственности высокоточной бикомпактной схемы для квазилинейных уравнений гиперболического типа // Ж. вычисл. матем. и матем. физ. 2014. Т. 54. № 5. С. 815–820.
- 12. Хайрер Э., Нëрсетт С., Ваннер Г. Решение обыкновенных дифференциальных уравнений. Нежесткие задачи: пер. с англ. М.: Мир, 1990. 512 c.