RAS PresidiumДоклады Российской академии наук. Математика, информатика, процессы управления Doklady Mathematics

  • ISSN (Print) 2686-9543
  • ISSN (Online) 3034-5049

Multi-vortices and lower bounds for the attractor dimension of 2d Navier-Stokes equations

PII
10.31857/S2686954324020163-1
DOI
10.31857/S2686954324020163
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 516 / Issue number 1
Pages
98-102
Abstract
A new method for obtaining lower bounds for the dimension of attractors for the Navier–Stokes equations, which does not use Kolmogorov flows, is presented. Using this method, exact estimates of the dimension are obtained for the case of equations on a plane with Ekman damping. Similar estimates were previously known only for the case of periodic boundary conditions. In addition, similar lower bounds are obtained for the classical Navier–Stokes system in a two-dimensional bounded domain with Dirichlet boundary conditions.
Keywords
уравнения Навье–Стокса аттракторы размерность неустойчивые вихри
Date of publication
15.10.2024
Year of publication
2024
Number of purchasers
0
Views
41

References

  1. 1. Бабин А.В., Вишик М.И. Аттракторы эволюционных уравнений. M.: Наука, 1989.
  2. 2. Temam R. Infinite Dimensional Dynamical Systems in Mechanics and Physics, 2nd ed. New York: Springer-Verlag, 1997.
  3. 3. Ilyin A.A., Miranville A., Titi E.S. Small viscosity sharp estimates for the global attractor of the 2-D damped/driven Navier–Stokes equations // Commun. Math. Sci. 2004. V. 2. P. 403–426.
  4. 4. Ilyin A.A., Patni K., Zelik S.V. Upper bounds for the attractor dimension of damped Navier–Stokes equations in R2 // Discrete Contin. Dyn. Syst. 2016 V. 36. N 4. P. 2085–2102.
  5. 5. Zelik S.V. Attractors. Then and Now // Успехи математических наук. 2023. V. 78. N 4. P. 53–198.
  6. 6. Liu V.X. A sharp lower bound for the Hausdorff dimension of the global attractors of the 2D Navier–Stokes equations // Comm. Math. Phys. 1993. V. 158. P. 327–339.
  7. 7. Мешалкин Л.Д., Синай Я.Г. Исследование устойчивости стационарного решения одной системы уравнений плоского движения несжимаемой вязкой жидкости // Прикладная мат. мех. 1961. Т. 25. С. 1140–1143.
  8. 8. Vishik M.M. Instability and non-uniqueness in the Cauchy problem for the Euler equations of an ideal incompressible fluid. Part I arXiv:1805.09426 and Part 2 arXiv:1805.09440, 2018.
  9. 9. Albritton D., Brué E., Colombo M. Non-uniqueness of Leray solutions of the forced Navier–Stokes equations // Ann. Math. (2) 2022. V. 196. N 1. P. 415–455.
  10. 10. Mielke A., Zelik S.V. Multi-Pulse Evolution and Space-Time Chaos in Dissipative Systems // Mem. Amer. Math. Soc. 2009. V. 198. N 925. 97 p.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library