Президиум РАНДоклады Российской академии наук. Математика, информатика, процессы управления Doklady Mathematics

  • ISSN (Print) 2686-9543
  • ISSN (Online) 3034-5049

Об одной экстремальной задаче для финитных положительно определённых функций

Код статьи
10.31857/S2686954324020118-1
DOI
10.31857/S2686954324020118
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 516 / Номер выпуска 1
Страницы
75-78
Аннотация
В данной работе рассматривается экстремальная задача для положительно определенных функций на с фиксированным носителем и фиксированным значением в начале координат (класс
Ключевые слова
положительно определенные функции экстремальные задачи преобразование Фурье целые функции экспоненциального сферического типа
Дата публикации
15.10.2024
Год выхода
2024
Всего подписок
0
Всего просмотров
38

Библиография

  1. 1. Sasvári Z. Multivariate Characteristic and Correlation Functions. Berlin, Boston: De Gruyter, 2013.
  2. 2. Akopyan R., Efimov A. Boas–Kac roots of positive definite functions of several variables // Anal. Math. 2017. V. 43. N 3. P. 359–369.
  3. 3. Siegel, C.L. Über Gitterpunkte in konvexen Körpern und damit zusammenhängendes Extremal problem // Acta Math. 1935. V. 65. P. 307–323.
  4. 4. Boas R.P., Jr., Kac. M. Inequalities for Fourier transforms of positive functions // Duke Math. J. 1945. V. 12. N 1. P. 189–206.
  5. 5. Горбачев Д.В. Экстремальная задача для периодических функций с носителем в шаре // Матем. заметки. 2001. Т. 69. № 3. 346–352.
  6. 6. Arestov A.A., Berdysheva E.E. The Turán problem for a class of polytopes // East J. Approx. 2002. V. 8. N 3. P. 381–388.
  7. 7. Kolountzakis M., Révész S.G. On a problem of Turán about positive definite functions // Proc. Amer. Math. Soc. 2003. V. 131. P. 3423–3430.
  8. 8. Révész S.G. Turán's extremal problem on locally compact abelian groups // Anal. Math. 2011. V. 37. N 1. P. 15–50.
  9. 9. Ефимов А.В. Вариант задачи Турана для положительно-определенных функций нескольких переменных // Тр. ИММ УрО РАН. 2011. Т. 17. № 3. С. 136–154.
  10. 10. Манов А.Д. Об одной экстремальной задаче для положительно определённых функций // Чебышевский сб. 2021. Т. 22. № 5. 161–171.
  11. 11. Szász O. Über harmonische Funktionen und L-Formen. // Math. Zeitschr. 1918. V. 1. P. 149–162.
  12. 12. Rudin W. An extension theorem for positive-definite functions // Duke Math. J. 1970. V. 37. P. 49–53.
  13. 13. Ефимов А.В. Аналог теоремы Рудина для непрерывных радиальных положительно определенных функций нескольких переменных // Тр. ИММ УрО РАН. 2012. Т. 18. № 4. С. 172–179.
  14. 14. Ehm W., Gneiting T., Richards D. Convolution roots of radial positive definite functions with compact support // Trans. Amer. Math. Soc. 2004. V. 356. P. 4655–4685.
  15. 15. Ибрагимов И.И. Экстремальные задачи в классе целых функций конечной степени // Изв. АН СССР. Сер. матем. 1959. Т. 23. № 2. 243–256.
  16. 16. Korevaar J. An inequality for entire functions of exponential type // Nieuw Arch. Wiskunde. 1949. V. 23. N 2. P. 55–62.
  17. 17. Горбачев Д.В. Точные неравенства Бернштейна – Никольского для полиномов и целых функций экспоненциального типа // Чебышевский сб. 2021. Т. 22. № 5. С. 58–110.
  18. 18. Dai F., Gorbachev D., Tikhonov S. Nikolskii constants for polynomials on the unit sphere // JAMA. 2020. V. 140. P. 161–185.
  19. 19. Горбачев Д.В., Иванов В.И. Некоторые экстремальные задачи для преобразования Фурье по собственным функциям оператора Штурма–Лиувилля // Чебышевский сб. 2017. Т. 18. № 2. C. 34–53
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека