- Код статьи
- 10.31857/S2686954324010064-1
- DOI
- 10.31857/S2686954324010064
- Тип публикации
- Статья
- Статус публикации
- Опубликовано
- Авторы
- Том/ Выпуск
- Том 515 / Номер выпуска 1
- Страницы
- 40-43
- Аннотация
- Построено два однопараметрических семейства узких по Зельманову и Шалеву положительно градуированных супералгебр Ли, порожденных двумя элементами и двумя соотношениями. Первое семейство содержит положительную часть R+ алгебры Рамона, второе – положительную часть NS+ алгебры Невё–Шварца. Результаты статьи обобщают на случай супералгебр Ли теорему Бенуа о задании положительной части алгебры Витта образующими и соотношениями.
- Ключевые слова
- супералгебра Ли положительная градуировка узкие алгебры центральное расширение алгебра Рамона алгебра Невё–Шварца
- Дата публикации
- 15.11.2024
- Год выхода
- 2024
- Всего подписок
- 0
- Всего просмотров
- 48
Библиография
- 1. Benoist Y. Une nilvariété non affine // J. Diff. Geom. 1995. Vol. 41. P. 21–52.
- 2. Фиаловски А. Классификация градуированных алгебр Ли с двумя образующими // Вестн. МГУ. Сер. 1. Матем., мех. 1983. Т. 38. № 2. P. 62–64.
- 3. Bouarroudj S., Navarro R.M. Cohomologically rigid solvable Lie superalgebras with model filiform and model nilpotent nilradical // Communications in Algebra. 2021. Vol. 49. No. 12. P. 5061–5072.
- 4. Camacho L.M., Navarro R.M., Sánchez J.M. On Naturally Graded Lie and Leibniz Superalgebras // Bull. Malays. Math. Sci. Soc. 2020. Vol. 43. P. 3411–3435.
- 5. Миллионщиков Д.В. Филиформные -градуированные алгебры Ли // УМН. 2002. Т. 57. № 2. С. 197–198.
- 6. Миллионщиков Д.В. Естественно градуированные алгебры Ли медленного роста // Матем. сб. 2019. Т. 210. № 6. С. 111–160.
- 7. Миллионщиков Д.В. Узкие положительно градуированные алгебры Ли // Доклады Академии наук. 2018. Т. 483. № 5. С. 492–494.
- 8. Milnor J. On fundamental groups of complete affinely flat manifolds // Adv. Math. 1977. Vol. 25. P. 178–187.
- 9. Shalev A., Zelmanov E.I. Narrow Lie algebras: A coclass theory and a characterization of the Witt algebra // J. Algebra. 1997. Vol. 189. P. 294–331.