Президиум РАНДоклады Российской академии наук. Математика, информатика, процессы управления Doklady Mathematics

  • ISSN (Print) 2686-9543
  • ISSN (Online) 3034-5049

О конечности множества обобщенных якобианов с нетривиальным кручением над полями алгебраических чисел

Код статьи
10.31857/S2686954323700285-1
DOI
10.31857/S2686954323700285
Тип публикации
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 513 / Номер выпуска 1
Страницы
66-70
Аннотация
Для гладкой проективной кривой \(\mathcal{C}\), определенной над полем алгебраических чисел k, исследуется вопрос о конечности множества обобщенных якобианов \({{J}_{\mathfrak{m}}}\) кривой \(\mathcal{C}\), ассоциированных с модулями \(\mathfrak{m}\), определенными над k, такими что фиксированный дивизор, представляющий класс конечного порядка в якобиане J кривой \(\mathcal{C}\), поднимается до класса кручения в обобщенном якобиане \({{J}_{\mathfrak{m}}}\). В работе получены различные результаты о конечности и бесконечности множества обобщенных якобианов с вышеуказанным свойством в зависимости от геометрических условий на носитель \(\mathfrak{m}\), а также от условий на поле k. Эти результаты были применены к проблеме периодичности разложения в непрерывную дробь, построенную в поле формальных степенных рядов \(k((1{\text{/}}x))\), для специальных элементов поля функций \(k(\tilde {\mathcal{C}})\) гиперэллиптической кривой \(\tilde {\mathcal{C}}:{{y}^{2}} = f(x)\).
Ключевые слова
якобиево многообразие обобщенный якобиан точки кручения непрерывные дроби гиперэллиптическая кривая
Дата публикации
01.09.2023
Год выхода
2023
Всего подписок
0
Всего просмотров
40

Библиография

  1. 1. Платонов В.П. Теоретико-числовые свойства гиперэллиптических полей и проблема кручения в якобианах гиперэллиптических кривых над полем рациональных чисел // УМН. 2014. V. 69:1 (415). P. 3–38.
  2. 2. Платонов В.П., Федоров Г.В. О проблеме классификации многочленов f с периодическим разложением в непрерывную дробь в гиперэллиптических полях // Известия Российской академии наук. Серия математическая. 2021. Т. 85. № 5. С. 152–189.
  3. 3. Платонов В.П., Федоров Г.В. О проблеме периодичности непрерывных дробей в гиперэллиптических полях // Матем. сб. 2018. Т. 209. № 4. С. 54–94.
  4. 4. Schmidt W.M. On continued fractions and diophantine approximation in power series fields // Acta arithmetica.2000. V. 95:2. P. 139–166.
  5. 5. Rosenlicht M. Generalized jacobian varieties // Annals of Mathematics. 1954. P. 505–530.
  6. 6. Zannier U. Hyperelliptic continued fractions and generalized Jacobians // American Journal of Mathematics. 2019. V. 141:1. P. 1–40.
  7. 7. Серр Ж.П. Алгебраические группы и поля классов. М.: Мир, 1968. 278 с.
  8. 8. Ленг С. Алгебраические числа. М.: Мир, 1966. 226 с.
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека