- Код статьи
- 10.31857/S2686954323602257-1
- DOI
- 10.31857/S2686954323602257
- Тип публикации
- Статус публикации
- Опубликовано
- Авторы
- Том/ Выпуск
- Том 514 / Номер выпуска 1
- Страницы
- 98-106
- Аннотация
- Получены новые случаи интегрируемых однородных по части переменных динамических систем пятого порядка, в которых может быть выделена система на касательном расслоении к двумерному многообразию. При этом силовое поле разделяется на внутреннее (консервативное) и внешнее, которое обладает диссипацией разного знака. Внешнее поле вводится с помощью некоторого унимодулярного преобразования и обобщает ранее рассмотренные поля. Приведены полные наборы как первых интегралов, так и инвариантных дифференциальных форм.
- Ключевые слова
- инвариант динамической системы существенно особые точки инварианта система с диссипацией интегрируемость
- Дата публикации
- 17.09.2025
- Год выхода
- 2025
- Всего подписок
- 0
- Всего просмотров
- 13
Библиография
- 1. Poincaré H. Calcul des probabilités. Gauthier–Villars, Paris. 1912. 40 p.
- 2. Колмогоров А.Н. О динамических системах с интегральным инвариантом на торе // Доклады АН СССР. 1953. Т. 93. № 5. С. 763–766.
- 3. Козлов В.В. Тензорные инварианты и интегрирование дифференциальных уравнений // Успехи матем. наук. 2019. Т. 74. № 1(445). С. 117–148.
- 4. Шамолин М.В. Об интегрируемости в трансцендентных функциях // Успехи матем. наук. 1998. Т. 53. № 3. С. 209–210.
- 5. Шамолин М.В. Новые случаи интегрируемых систем с диссипацией на касательном расслоении четырехмерного многообразия // Доклады РАН. 2018. Т. 479. № 3. С. 270–276.
- 6. Шамолин М.В. Новый случай интегрируемости в динамике многомерного твердого тела в неконсервативном поле при учете линейного демпфирования // Доклады РАН. 2014. Т. 457. № 5. С. 542–545.
- 7. Шамолин М.В. Тензорные инварианты геодезических, потенциальных и диссипативных систем на касательном расслоении двумерного многообразия // Доклады РАН. Математика, информатика, процессы управления. 2021. Т. 501. № 1. С. 89–94.
- 8. Козлов В.В. Рациональные интегралы квазиоднородных динамических систем // Прикл. матем. и механ. 2015. Т. 79. № 3. С. 307–316.
- 9. Клейн Ф. Неевклидова геометрия. Пер. с нем. Изд. 4, испр., обновл. М.: URSS, 2017. 52 с.
- 10. Вейль Г. Симметрия. М.: URSS, 2007.
- 11. Козлов В.В. Интегрируемость и неинтегрируемость в гамильтоновой механике // Успехи матем. наук. 1983. Т. 38. № 1. С. 3–67.
- 12. Трофимов В.В., Шамолин М.В. Геометрические и динамические инварианты интегрируемых гамильтоновых и диссипативных систем // Фундам. и прикл. матем. 2010. Т. 16. № 4. С. 3–229.
- 13. Шамолин М.В. Новые случаи интегрируемых систем с диссипацией на касательном расслоении многомерного многообразия // Доклады РАН. 2018. Т. 482. № 5. С. 527–533.
- 14. Шамолин М.В. Новые случаи интегрируемых систем нечетного порядка с диссипацией // Доклады РАН. Математика, информатика, процессы управления. 2020. Т. 491. № 1. С. 95–101.
- 15. Камке Э. Справочник по обыкновенным дифференциальным уравнениям. М.: Наука, 1976.
- 16. Polyanin A.D., & Zaitsev V.F. (2017). Handbook of Ordinary Differential Equations: Exact Solutions, Methods, and Problems (3rd ed.). Chapman and Hall/CRC. https://doi.org/10.1201/9781315117638
- 17. Шабат Б.В. Введение в комплексный анализ. М.: Наука, 1987.
- 18. Новиков С.П., Тайманов И.А. Современные геометрические структуры и поля. М.: МЦНМО, 2005.
- 19. Тамура И. Топология слоений. М.: Мир, 1979.