RAS PresidiumДоклады Российской академии наук. Математика, информатика, процессы управления Doklady Mathematics

  • ISSN (Print) 2686-9543
  • ISSN (Online) 3034-5049

BERNSTEIN INEQUALITY FOR RIESZ DERIVATIVE OF FRACTIONAL ORDER LESS THAN 1 OF ENTIRE FUNCTION OF EXPONENTIAL TYPE

PII
10.31857/S2686954323600611-1
DOI
10.31857/S2686954323600611
Publication type
Status
Published
Authors
Volume/ Edition
Volume 514 / Issue number 1
Pages
118-122
Abstract
We consider Bernstein inequality for the Riesz derivative of order \(0 < \alpha < 1\) of entire functions of exponential type in the uniform norm on the real line. The interpolation formula for this operator is obtained; this formula has non-equidistant nodes. By means of this formula, the sharp Bernstein inequality is obtained for all \(0 < \alpha < 1\), more precisely, the extremal entire function and the exact constant are written out.
Keywords
целые функции экспоненциального типа производная Рисса неравенство Бернштейна равномерная норма функции Бесселя
Date of publication
01.01.2023
Year of publication
2023
Number of purchasers
0
Views
50

References

  1. 1. Горбачев Д.В. Точные неравенства Бернштейна – Никольского для полиномов и целых функций экспоненциального типа // Чебышевский сборник. 2021. Т. 22. № 5. С. 58–110. https://doi.org/10.22405/2226-8383-2021-22-5-58-110
  2. 2. Арестов В.В. Об интегральных неравенствах для тригонометрических полиномов и их производных // Изв. АН СССР. Сер. Мат. 1981. Т. 45. № 1. С. 3–22.
  3. 3. Арестов В.В., Глазырина П.Ю. Неравенство Бернштейна – Сеге для дробных производных тригонометрических полиномов // Тр. ИММ УрО РАН. 2014. Т. 20. № 1. С. 17–31.
  4. 4. Самко С.Г., Килбас А.А., Маричев О.И. Интегралы и производные дробного порядка и некоторые их приложения. Минск: Наука и техника. 1987.
  5. 5. Civin P. Inequalities for trigonometric integrals // Duke Math. J. 1941. V. 8. № 4. P. 656–665. https://doi.org/10.1215/S0012-7094-41-00855-4
  6. 6. Лизоркин П.И. Оценки тригонометрических интегралов и неравенство Бернштейна для дробных производных // Изв. АН СССР. Сер. мат. 1965. Т. 4. № 3. С. 109–126.
  7. 7. Stein E.M. A characterization of functions arising as potentials. I // Bull. Amer. Math. Soc. 1961. V. 67. № 1. P. 102–104.
  8. 8. Лизоркин П.И. Описание пространств в терминах разностных сингулярных интегралов // Матем. сб. 1970. Т. 81(123). № 1. С. 79–91.
  9. 9. Самко С.Г. О пространствах риссовых потенциалов // Изв. АН СССР. Сер. матем. 1976. Т. 40. № 5. С. 1143–1172.
  10. 10. Ахиезер Н.И. Лекции по теории аппроксимации. М.: Физматлит, 1965.
  11. 11. Соколов Г.Т. О некоторых экстремальных свойствах тригонометрических сумм // Известия Академии наук СССР. VII серия. Отделение математических и естественных наук. 1935. Т. 6–7. С. 857–884.
  12. 12. Szegő G. Über einen Satz des Herrn Serge Bernstein // Schrift. Königsberg. Gelehrten Gesellschaft. 1928. V. 5. № 4. P. 59–70.
  13. 13. Kozko A.I. The exact constants in the Bernstein–Zygmund–Szegő inequalities with fractional derivatives and the Jackson–Nikol’skii inequality for trigonometric polynomials // East J. Approx. 1998. V. 4. № 3. P. 391–416.
  14. 14. Arestov V.V., Glazyrina P.Yu. Sharp integral inequalities for fractional derivatives of trigonometric polynomials // J. Approx. Theory. 2012. V. 164. № 11. P. 1501–1512. https://doi.org/10.1016/j.jat.2012.08.004
  15. 15. Леонтьева А.О. Неравенство Бернштейна–Сегё для производной Рисса тригонометрических полиномов в пространствах с классическим значением точной константы // Матем. сборник. 2023. Т. 214. № 3. С. 135–152. https://doi.org/10.4213/sm982210.4213/sm9822
  16. 16. Ватсон Г.Н. Теория бесселевых функций. М.: ИЛ. 1949.
  17. 17. Владимиров В.С. Уравнения математической физики. М.: Физматлит, 1981.
  18. 18. Frappier C., Olivier P. A quadrature formula involving zeros of Bessel functions // Math. of Computation. 1993. V. 60. № 201. P. 303–316. https://doi.org/10.2307/2153168
  19. 19. Grozev G.R., Rahman Q. I. A quadrature formula with zeros of Bessel functions as nodes // Math. of Computation. 1995. V. 64. № 210. P. 715–725. https://doi.org/10.2307/2153447
  20. 20. Горбачев Д.В. Экстремальные задачи для целых функций экспоненциального сферического типа // Матем. заметки. 2000. Т. 68. № 2. С. 179–187. https://doi.org/10.4213/mzm936
  21. 21. Горбачев Д.В. Экстремальная задача для периодических функций с носителем в шаре Матем. заметки. 2001. Т. 69. № 3. С. 346–352. https://doi.org/10.4213/mzm508
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library