Президиум РАНДоклады Российской академии наук. Математика, информатика, процессы управления Doklady Mathematics

  • ISSN (Print) 2686-9543
  • ISSN (Online) 3034-5049

ДИНАМИКА СИСТЕМЫ ДВУХ УРАВНЕНИЙ С БОЛЬШИМ ЗАПАЗДЫВАНИЕМ

Код статьи
10.31857/S2686954323600507-1
DOI
10.31857/S2686954323600507
Тип публикации
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 513 / Номер выпуска 1
Страницы
51-56
Аннотация
Рассматривается локальная динамика систем двух уравнений с запаздыванием. Основное предположение заключается в том, что параметр запаздывания является достаточно большим. Выделены критические случаи в задаче об устойчивости состояния равновесия и показано, что они имеют бесконечную размерность. Использованы и получили дальнейшее развитие методы бесконечномерной нормализации. В качестве основных результатов построены специальные нелинейные краевые задачи, которые играют роль нормальных форм. Их нелокальная динамика определяет поведение всех решений исходной системы в окрестности состояния равновесия.
Ключевые слова
динамика устойчивость запаздывание квазинормальные формы сингулярные возмущения
Дата публикации
01.09.2023
Год выхода
2023
Всего подписок
0
Всего просмотров
37

Библиография

  1. 1. Шарковский А.Н., Майстренко Ю.Л., Романенко Е.Ю. Разностные уравнения и их приложения. Киев: Наукова думка, 1986. 280 с.
  2. 2. Kashchenko S.A. The Dynamics of Second-order Equations with Delayed Feedback and a Large Coefficient of Delayed Control // Regular and Chaotic Dynamics. 2016. V. 21. № 7/8. P. 811–820. https://doi.org/10.1134/S1560354716070042
  3. 3. Giacomelli G., Politi A. Relationship between delayed and spatially extended dynamical systems // Physical review letters. 1996. V. 76. № 15. P. 2686.
  4. 4. Mensour B., Longtin A. Power spectra and dynamical invariants for delay-differential and difference equations // Physica D: Nonlinear Phenomena. 1998. V. 113. № 1. P. 1–25.
  5. 5. Wolfrum M., Yanchuk S. Eckhaus instability in systems with large delay // Physical review letters. 2006. V. 96. № 22. P. 220201.
  6. 6. Bestehorn M., Grigorieva E.V., Haken H., Kashchenko S.A. Order parameters for class-B lasers with a long time delayed feedback // Physica D: Nonlinear Phenomena. 2000. V. 145. № 1/2. P. 110–129. https://doi.org/10.1016/S0167-2789 (00)00106-8
  7. 7. Giacomelli G., Politi A. Multiple scale analysis of delayed dynamical systems // Physica D: Nonlinear Phenomena. 1998. V. 117. № 1–4. P. 26–42.
  8. 8. Ikeda K., Daido H., Akimoto O. Optical turbulence: chaotic behavior of transmitted light from a ring cavity // Physical Review Letters. 1980. V. 45. № 9. P. 709.
  9. 9. Hale J.K. Theory of Functional Differential Equations, 2nd ed.; Springer: New York, NY, USA, 1977. 626 p. https://doi.org/10.1007/978-1-4612-9892-2
  10. 10. D’Huys O., Vicente R., Erneux T., Danckaert J., Fischer I. Synchronization properties of network motifs: Influence of coupling delay and symmetry // Chaos: An Interdisciplinary Journal of Nonlinear Science. 2008/12/03. AIP, 2008. V. 18. № 3. P. 37116.
  11. 11. Klinshov V.V., Nekorkin V.I. Synchronization of time-delay coupled pulse oscillators // Chaos, Solitons and Fractals. 2011. V. 44. № 1–3. P. 98–107.
  12. 12. Клиньшов В.В., Некоркин В.И. Синхронизация автоколебательных сетей с запаздывающими связями // Успехи физических наук. 2013. Т. 183, № 12. С. 1323–1336.
  13. 13. Klinshov V., Shchapin D., Yanchuk S., Nekorkin V. Jittering waves in rings of pulse oscillators // Physical Review E. 2016. V. 94. № 1. P. 012206.
  14. 14. Yanchuk S., Perlikowski P. Delay and periodicity // Physical Review E. APS. 2009. V. 79. № 4. P. 1–9.
  15. 15. Кащенко С.А. Применение метода нормализации к изучению динамики дифференциально-разностных уравнений с малым множителем при производной // Дифференциальные уравнения. 1989. Т. 25. № 8. С. 1448–1451.
  16. 16. Kashchenko S.A. Van der Pol Equation with a Large Feedback Delay // Mathematics. 2023. V. 11. № 6. P. 1301. https://doi.org/10.3390/math11061301
  17. 17. Kaschenko S.A. Normalization in the systems with small diffusion // Int. J. Bifurc. Chaos Appl. Sci. Eng. 1996. V. 6. P. 1093–1109. https://doi.org/10.1142/S021812749600059X
  18. 18. Kashchenko S.A. The Ginzburg–Landau equation as a normal form for a second-order difference-differential equation with a large delay // Computational Mathematics and Mathematical Physics. 1998. V. 38. № 3. P. 443–451.
  19. 19. Vasil’eva A.B., Butuzov V.F. Asymptotic expansions of the solutions of singularly perturbed equations. Moscow: Nauka, 1973. 272 p.
  20. 20. Butuzov V.F., Nefedov N.N., Omel’chenko O., and Recke L. Boundary layer solutions to singularly perturbed quasilinear systems. Discrete and Continuous Dynamical Systems. Series B. 2022. V. 27. № 8. P. 4255–4283. https://doi.org/10.3934/dcdsb.2021226
  21. 21. Nefedov N.N. Development of methods of asymptotic analysis of transitionlayers in reaction–diffusion–advection equations: theory and applications // Computational Mathematics and Mathematical Physics. 2021. V. 61. № 12. P. 2068–2087. https://doi.org/10.1134/S0965542521120095
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека