Президиум РАНДоклады Российской академии наук. Математика, информатика, процессы управления Doklady Mathematics

  • ISSN (Print) 2686-9543
  • ISSN (Online) 3034-5049

ЗАДАЧА ПРОТЕКАНИЯ ОДНОГО ТИПА НЕНЬЮТОНОВСКОЙ ЖИДКОСТИ ЧЕРЕЗ ГРАНИЦУ МНОГОСВЯЗНОЙ ОБЛАСТИ

Код статьи
10.31857/S2686954323600064-1
DOI
10.31857/S2686954323600064
Тип публикации
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 510 / Номер выпуска 1
Страницы
33-38
Аннотация
В работе устанавливается существование слабого решения начально-краевой задачи для уравнений движения вязкоупругой жидкости в многосвязной области с памятью вдоль траекторий поля скоростей и неоднородным граничным условием. Исследование предполагает аппроксимацию исходной задачи приближениями галеркинского типа с последующим предельным переходом на основе априорных оценок. Для исследования поведения траекторий негладкого поля скоростей используется теория регулярных лагранжевых потоков.
Ключевые слова
вязкоупругая сплошная среда многосвязная область неоднородное граничное условие априорные оценки слабое решение регулярный лагранжев поток
Дата публикации
17.09.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
11

Библиография

  1. 1. Осколков А.П. Начально-краевые задачи для уравнений движения жидкостей Кельвина–Фойгта и жидкостей Олдройта // Тр. МИАН СССР. 1988. Т. 179. С. 126–164.
  2. 2. Zvyagin V.G., Vorotnikov D.A. Topological approximation methods for evolutionary problems of nonlinear hydrodynamics. de Gruyter Series in Nonlinear Analysis and Applications. V. 12. Berlin: Walter de Gruyter & Co, 2008. 230 p.
  3. 3. Звягин В.Г., Орлов В.П. О слабой разрешимости задачи вязкоупругости с памятью // Дифференц. уравнения. 2017. Т. 53. № 2. С. 215–220.
  4. 4. Zvyagin V.G., Orlov V.P. Solvability of one non-Newtonian fluid dynamics model with memory // Nonlinear Analysis: TMA. 2018. V. 172. P. 73–98.
  5. 5. Zvyagin V.G., Orlov V.P. Weak solvability of fractional Voigt model of viscoelasticity // Discrete and Continuous Dynamical Systems, Series A. 2018. V. 38. № 12. P. 6327–6350.
  6. 6. Zvyagin V.G., Orlov V.P. On one problem of viscoelastic fluid dynamics with memory on an infinite time interval // Discrete and Continuous Dynamical Systems, Series B. 2018. V. 23. № 9. P. 3855–3877.
  7. 7. Коробков М.В., Пилецкас К., Пухначёв В.В., Руссо Р. Задача протекания для уравнений Навье–Стокса // УМН. 2014. Т. 69. № 6. С. 115–176.
  8. 8. Ладыженская О.А., Солонников В.А. О некоторых задачах векторного анализа и обобщенных постановках краевых задач для уравнений Навье–Стокса // Зап. научн. сем. ЛОМИ. 1976. Т. 59. С. 81–116.
  9. 9. Ворович И.И., Юдович В.И. Стационарное течение вязкой несжимаемой жидкости // Матем. сб. 1961. Т. 53. № 4. С. 393–428.
  10. 10. Avrin J. Existence, uniqueness, and asymptotic stability results for the 3- steady and unsteady Navier–Stokes equations on multi-connected domains with inhomogeneous boundary conditions // Asymptotic Analysis. 2022. V. Pre-press. № Pre-press. pp. 1–22, 2022. https://doi.org/10.3233/ASY-22181610.3233/ASY-221816
  11. 11. Avrin J. The 3- Spectrally-Hyperviscous Navier-Stokes Equations on Bounded Domains with Zero Boundary Conditions // arXiv:1908.11005v1 [math.AP] 29 Aug 2019.
  12. 12. Ворович И.И., Юдович В.И. Стационарное течение вязкой несжимаемой жидкости // Матем. сб. 1961. Т. 53. № 4. С. 393–428.
  13. 13. Темам Р. Уравнения Навье–Стокса. Теория и численный анализ. М: Мир, 1987. 408 с.
  14. 14. DiPerna R.J., Lions P.L. Ordinary differential equations, transport theory and Sobolev spaces // Invent. Math. V. 1989. 98. P. 511–547.
  15. 15. Crippa G., de Lellis C. Estimates and regularity results for the diPerna–Lions flow // J. Reine Angew. Math. 2008. V. 616. P. 15–46.
  16. 16. Ладыженская О.А. Математические вопросы динамики вязкой несжимаемой жидкости. М: Наука, 1970. 204 с.
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека