RAS PresidiumДоклады Российской академии наук. Математика, информатика, процессы управления Doklady Mathematics

  • ISSN (Print) 2686-9543
  • ISSN (Online) 3034-5049

AN ANALOGUE OF MAHLER’S TRANSFERENCE THEOREM FOR MULTIPLICATIVE DIOPHANTINE APPROXIMATION

PII
10.31857/S2686954323600015-1
DOI
10.31857/S2686954323600015
Publication type
Status
Published
Authors
Volume/ Edition
Volume 510 / Issue number 1
Pages
18-22
Abstract
Khintchine’s and Dyson’s transference theorems can be very easily deduced from Mahler’s transference theorem. In the multiplicative setting an obstacle appears, which does not allow deducing the multiplicative transference theorem immediately from Mahler’s theorem. Some extra considerations are required, for instance, induction by the dimension. In this paper we propose an analogue of Mahler’s theorem which implies the multiplicative transference theorem immediately.
Keywords
мультипликативные диофантовы приближения мультипликативные диофантовы экспоненты принцип переноса теорема Малера
Date of publication
17.09.2025
Year of publication
2025
Number of purchasers
0
Views
12

References

  1. 1. Dyson F.J. On simultaneous Diophantine approximations // Proc. London Math. Soc. 1947. V. 49. № 2. P. 409–420.
  2. 2. German O.N. Transference inequalities for multiplicative Diophantine exponents // Труды МИРАН. 2011. Т. 275. С. 227–239.
  3. 3. Касселс Дж.В.С. Введение в теорию диофантовых приближений. М.: ИИЛ, 1961.
  4. 4. Шмидт В. Диофантовы приближения. М.: “Мир”, 1983.
  5. 5. German O.N. On Diophantine exponents and Khintchine’s transference principle // Moscow J. Comb. Number Theory. 2012. V. 2. № 2. P. 22–51.
  6. 6. Герман О.Н., Евдокимов К.Г. Усиление теоремы переноса Малера // Изв. РАН. Сер. матем. 2015. Т. 79. № 1. С. 63–76.
  7. 7. Mahler K. Ein Übertragungsprinzip für lineare Ungleichungen // Čas. Pešt. Mat. Fys. 1939. V. 68. P. 85–92.
  8. 8. Mahler K. On compound convex bodies, I. Proc. London Math. Soc. 1955. V. 5. № 3. P. 358–379.
  9. 9. Mahler K. On compound convex bodies. II. Proc. London Math. Soc. 1955. V. 5. № 3. P. 380–384.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library