- Код статьи
- 10.31857/S2686954322600768-1
- DOI
- 10.31857/S2686954322600768
- Тип публикации
- Статус публикации
- Опубликовано
- Авторы
- Том/ Выпуск
- Том 509 / Номер выпуска 1
- Страницы
- 69-76
- Аннотация
- В данной работе предъявлены полные наборы инвариантных дифференциальных форм фазового объема для однородных систем на касательных расслоениях к гладким четырехмерным многообразиям. Показана связь наличия данных инвариантов и полным набором первых интегралов, необходимых для интегрирования геодезических, потенциальных и диссипативных систем. При этом вводимые силовые поля вносят в рассматриваемые системы диссипацию разного знака и обобщают ранее рассмотренные.
- Ключевые слова
- динамическая система интегрируемость диссипация трансцендентный первый интеграл инвариантная дифференциальная форма
- Дата публикации
- 17.09.2025
- Год выхода
- 2025
- Всего подписок
- 0
- Всего просмотров
- 14
Библиография
- 1. H. Poincaré, Calcul des probabilités, Gauthier-Villars, Paris, 1912. 340 p.
- 2. Колмогоров А.Н. О динамических системах с интегральным инвариантом на торе // Доклады АН СССР, 1953. Т. 93. № 5. С. 763–766.
- 3. Козлов В.В. Тензорные инварианты и интегрирование дифференциальных уравнений // Успехи матем. наук. 2019. Т. 74, вып. 1. С. 117–148.
- 4. Шамолин М.В. Об интегрируемости в трансцендентных функциях // Успехи матем. наук. 1998. Т. 53, вып. 3. С. 209–210.
- 5. Шамолин М.В. Новые случаи интегрируемых систем с диссипацией на касательном расслоении четырехмерного многообразия // Доклады РАН, 2018. Т. 479. № 3. С. 270–276.
- 6. Шамолин М.В. Тензорные инварианты геодезических, потенциальных и диссипативных систем на касательном расслоении двумерного многообразия // Доклады РАН. Математика, информатика, процессы управления, 2021. Т. 501. № 1. С. 89–94.
- 7. Шамолин М.В. Новый случай интегрируемости в динамике многомерного твердого тела в неконсервативном поле при учете линейного демпфирования // Доклады РАН, 2014. Т. 457. № 5. С. 542–545.
- 8. Козлов В.В. Рациональные интегралы квазиоднородных динамических систем // Прикл. матем. и механ. 2015. Т. 79. № 3. С. 307–316.
- 9. Клейн Ф. Неевклидова геометрия. Пер. с нем. Изд. 4, испр., обновл. М.: URSS, 2017. 352 с.
- 10. Вейль Г. Симметрия. – М.: URSS, 2007.
- 11. Козлов В.В. Интегрируемость и неинтегрируемость в гамильтоновой механике // Успехи матем. наук. 1983. Т. 38, вып. 1. С. 3–67.
- 12. Камке Э. Справочник по обыкновенным дифференциальным уравнениям. М.: Наука, 1976.
- 13. Шабат Б.В. Введение в комплексный анализ. М.: Наука, 1987.
- 14. Трофимов В.В., Шамолин М.В. Геометрические и динамические инварианты интегрируемых гамильтоновых и диссипативных систем // Фундам. и прикл. матем. 2010. Т. 16. Вып. 4. С. 3–229.
- 15. Трофимов В.В. Симплектические структуры на группах автоморфизмов симметрических пространств // Вестн. Моск. ун-та. Сер. 1. Математика. Механика. 1984. № 6. С. 31–33.
- 16. Трофимов В.В., Фоменко А.Т. Методика построения гамильтоновых потоков на симметрических пространствах и интегрируемость некоторых гидродинамических систем // ДАН СССР. 1980. Т. 254. № 6. С. 1349–1353.
- 17. Новиков С.П., Тайманов И.А. Современные геометрические структуры и поля. М.: МЦНМО, 2005.
- 18. Тамура И. Топология слоений. М.: Мир, 1979.