RAS PresidiumДоклады Российской академии наук. Математика, информатика, процессы управления Doklady Mathematics

  • ISSN (Print) 2686-9543
  • ISSN (Online) 3034-5049

AN INVERSE PROBLEM FOR ELECTRODYNAMIC EQUATIONS WITH A NONLINEAR CONDUCTIVITY

PII
10.31857/S2686954322600719-1
DOI
10.31857/S2686954322600719
Publication type
Status
Published
Authors
Volume/ Edition
Volume 509 / Issue number 1
Pages
65-68
Abstract
An inverse problem of determination of a variable coefficient in electrodynamic equations with a nonlinear conductivity is considered. It is supposed that the unknown coefficient is a smooth function of space variables and finite in \({{\mathbb{R}}^{3}}\). From a homogeneous space a plane wave going in a direction fall down on a heterogeneousness. The direction is a parameter of the problem. The module of the electrical strength vector for some diapason of directions and for moments of the time close to arriving the wave at points of a surface of a ball, inside of which the heterogeneousness is contained, is given as the information for solution of the inverse problem. It is shown that this information reduces the inverse problem to the well known X-ray tomography. Algorithms of the numerical solution of the later problem is well developed.
Keywords
нелинейное уравнение электродинамики плоские волны рентгеновская томография единственность
Date of publication
17.09.2025
Year of publication
2025
Number of purchasers
0
Views
13

References

  1. 1. Kurylev Y., Lassas M., Uhlmann G. Invent. Math. 2018. V. 212. P. 781–857.
  2. 2. Lassas M., Uhlmann G., Wang Y. Comm. Math. Phys. 2018. V. 360. P. 555–609.
  3. 3. Barreto A.S. Inverse Probl. Imaging. 2020. V. 14. № 6. P. 1057–1105.
  4. 4. Lassas M. Proc. Int. Congress of Math. ICM 2018, Rio de Janeiro, Brazil. 2018. V. III. P. 3739–3760.
  5. 5. Stefanov P., Barreto A.S. arXiv:2102.06323. 2021.
  6. 6. de Hoop M., Uhlmann G., Wang Y. Mathematische Annalen. 2020. V. 376. № 1–2. P. 765–795.
  7. 7. Wang Y., Zhou T. Comm. PDE. 2019. V. 44. № 11. P. 1140–1158.
  8. 8. Uhlmann G., Zhai J. Discrete Continuous Dynamical Systems - A. 2021. V. 41. № 1. P. 455–469.
  9. 9. Barreto A.S., Stefanov P. arXiv: 2107.08513v1. [math. AP] 18 Jul 2021.
  10. 10. Романов В.Г. Доклады АН. 2022. Т. 504. № 1. С. 36–41.
  11. 11. Романов В.Г., Бугуева Т.В. Сиб. журн. индустр. матем. 2022. Т. 25. № 2. С. 83–100.
  12. 12. Романов В.Г., Бугуева Т.В. Сиб. журн. индустр. матем. 2022. Т. 25. № 3. С. 154–169.
  13. 13. Наттерер Ф. Математические аспекты компьютерной томографии. М.: Мир, 1990, 279 с.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library