RAS PresidiumДоклады Российской академии наук. Математика, информатика, процессы управления Doklady Mathematics

  • ISSN (Print) 2686-9543
  • ISSN (Online) 3034-5049

NONSTATIONARY VENTTSEL PROBLEM WITH VMOx LEADING COEFFICIENTS

PII
10.31857/S2686954322600707-1
DOI
10.31857/S2686954322600707
Publication type
Status
Published
Authors
Volume/ Edition
Volume 510 / Issue number 1
Pages
13-17
Abstract
We obtain some new results on strong solvability in the Sobolev spaces of the linear Venttsel initial-boundary value problems to parabolic equations with discontinuous leading coefficients.
Keywords
линейные параболические уравнения второго порядка задача Вентцеля априорная оценка класс <i>VMO<sub>x</sub></i> существование и единственность
Date of publication
17.09.2025
Year of publication
2025
Number of purchasers
0
Views
13

References

  1. 1. Вентцель А.Д. О граничных условиях для многомерных диффузионных процессов // Теория вероятн. и ее примен. 1959. Т. 4. № 2. С. 172–185.
  2. 2. Apushkinskaya D.E., Nazarov A.I. A survey of results on nonlinear Venttsel problems // Appl. Math. 2000. V. 45. № 1. P. 69–80.
  3. 3. Apushkinskaya D.E., Nazarov A.I., Palagachev D.K., Softova L.G. Venttsel boundary value problems with discontinuous data // SIAM J. Math. Anal. 2021. V. 53. № 1. P. 221–252.
  4. 4. Chiarenza F., Frasca M., Longo P. W2,p-solvability of the Dirichlet problem for nondivergence elliptic equations with VMO coefficients // Trans. Amer. Math. Soc. 1993. V. 336. № 2. P. 841–853.
  5. 5. Maugeri A., Palagachev D.K., Softova L.G. Elliptic and parabolic equations with discontinuous coefficients, volume 109 of Mathematical Research. Wiley-VCH Verlag Berlin GmbH, Berlin, 2000.
  6. 6. Krylov N.V. Lectures on elliptic and parabolic equations in Sobolev spaces, volume 96 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2008.
  7. 7. Dong H., Kim D. On the Lp-solvability of higher order parabolic and elliptic systems with BMO coefficients // Arch. Ration. Mech. Anal. 2011. V. 199. № 3. P. 889–941.
  8. 8. Апушкинская Д.Е., Назаров А.И. Начально-краевая задача с граничным условием Вентцеля для недивергентных параболических уравнений // Алгебра и анализ. 1994. Т. 6. № 6. С. 1–29.
  9. 9. John F., Nirenberg L. On functions of bounded mean oscillation // Comm. Pure Appl. Math. 1961. V. 14. P. 415–426.
  10. 10. Sarason D. Functions of vanishing mean oscillation // Trans. Amer. Math. Soc. 1975. V. 207. P. 391–405.
  11. 11. Бесов О.В., Ильин В.П., Никольский С.М. Интегральные представления функций и теоремы вложения. Наука, М., 1996. 2-е изд., перераб. и доп.
  12. 12. Krylov N.V. On parabolic Adams’s, the Chiarenza-Frasca theorems, and some other results related to parabolic Morrey spaces // Math. Eng. 2023. V. 5. № 2. P. 1–20.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library