- PII
- 10.31857/S2686954322600677-1
- DOI
- 10.31857/S2686954322600677
- Publication type
- Status
- Published
- Authors
- Volume/ Edition
- Volume 509 / Issue number 1
- Pages
- 17-22
- Abstract
- For the first time, bicompact schemes are generalized to non-stationary Navier–Stokes equations for a compressible heat-conducting fluid. The proposed schemes have an approximation of the fourth order in space and the second order in time, are absolutely stable (in the frozen-coefficients sense), conservative, and efficient. One of the new schemes is tested on several two-dimensional problems. It is shown that when the mesh is refined, the scheme converges with an increased third order. A comparison is made with the WENO5-MR scheme. The superiority of the chosen bicompact scheme in resolving vortices and shock waves, as well as their interaction, is demonstrated.
- Keywords
- вязкая жидкость уравнения Навье–Стокса высокоточные схемы компактные схемы бикомпактные схемы
- Date of publication
- 17.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 13
References
- 1. Толстых А.И. Компактные и мультиоператорные аппроксимации высокой точности для уравнений в частных производных. М.: Наука, 2015, 350 с.
- 2. De La Llave Plata M., Couaillier V., Pape M.-C. // Comput. Fluids. 2018. V. 176. P. 320–337.
- 3. Faranosov G.A., Goloviznin V.M., Karabasov S.A., Kondakov V.G., Kopiev V.F., Zaitsev M.A. // Comput. Fluids. 2013. V. 88. P. 165–179.
- 4. Головизнин В.М., Четверушкин Б.Н. // Ж. вычисл. матем. и матем. физ. 2018. Т. 58. № 8. С. 20–29.
- 5. Рогов Б.В., Михайловская М.Н. // Матем. моделирование. 2008. Т. 20. № 1. С. 99–116.
- 6. Михайловская М.Н., Рогов Б.В. // Ж. вычисл. матем. и матем. физ. 2012. Т. 52. № 4. С. 672–695.
- 7. Rogov B.V. // Appl. Numer. Math. 2019. V. 139. P. 136–155.
- 8. Брагин М.Д., Рогов Б.В. // Ж. вычисл. матем. и матем. физ. 2021. Т. 61. № 11. С. 1759–1778.
- 9. Bragin M.D. // Appl. Numer. Math. 2022. V. 174. P. 112–126.
- 10. Брагин М.Д. // Матем. моделирование. 2022. Т. 34. № 6. С. 3–21.
- 11. Douglas J., Dupont T.F. // Numerical Solution of Partial Differential Equations II / ed. by B. Hubbard. Academic Press, 1971. P. 133–214.
- 12. Duchemin L., Eggers J. // J. Comput. Phys. 2014. V. 263. P. 37–52.
- 13. Wang H., Zhang Q., Wang S., Shu C.-W. // Sci. China Math. 2020. V. 63. P. 183–204.
- 14. Shu C.-W. // Advanced Numerical Approximation of Nonlinear Hyperbolic Equations / ed. by A. Quarteroni, V. 1697 of Lecture Notes in Mathematics. Springer, 1998. P. 325–432.
- 15. Daru V., Tenaud C. // Comput. Fluids. 2001. V. 30. P. 89–113.
- 16. Bragin M.D., Rogov B.V. // Appl. Numer. Math. 2020. V. 151. P. 229–245.
- 17. Wang Z., Zhu J., Tian L., Zhao N. // J. Comput. Phys. 2021. V. 429. P. 110006.
- 18. Sjögreen B., Yee H.C. // J. Comput. Phys. 2003. V. 185. P. 1–26.
- 19. Yee H.C., Sandham N.D., Djomehri M.J. // J. Comput. Phys. 1999. V. 150. P. 199–238.