RAS PresidiumДоклады Российской академии наук. Математика, информатика, процессы управления Doklady Mathematics

  • ISSN (Print) 2686-9543
  • ISSN (Online) 3034-5049

BICOMPACT SCHEMES FOR COMPRESSIBLE NAVIER–STOKES EQUATIONS

PII
10.31857/S2686954322600677-1
DOI
10.31857/S2686954322600677
Publication type
Status
Published
Authors
Volume/ Edition
Volume 509 / Issue number 1
Pages
17-22
Abstract
For the first time, bicompact schemes are generalized to non-stationary Navier–Stokes equations for a compressible heat-conducting fluid. The proposed schemes have an approximation of the fourth order in space and the second order in time, are absolutely stable (in the frozen-coefficients sense), conservative, and efficient. One of the new schemes is tested on several two-dimensional problems. It is shown that when the mesh is refined, the scheme converges with an increased third order. A comparison is made with the WENO5-MR scheme. The superiority of the chosen bicompact scheme in resolving vortices and shock waves, as well as their interaction, is demonstrated.
Keywords
вязкая жидкость уравнения Навье–Стокса высокоточные схемы компактные схемы бикомпактные схемы
Date of publication
17.09.2025
Year of publication
2025
Number of purchasers
0
Views
13

References

  1. 1. Толстых А.И. Компактные и мультиоператорные аппроксимации высокой точности для уравнений в частных производных. М.: Наука, 2015, 350 с.
  2. 2. De La Llave Plata M., Couaillier V., Pape M.-C. // Comput. Fluids. 2018. V. 176. P. 320–337.
  3. 3. Faranosov G.A., Goloviznin V.M., Karabasov S.A., Kondakov V.G., Kopiev V.F., Zaitsev M.A. // Comput. Fluids. 2013. V. 88. P. 165–179.
  4. 4. Головизнин В.М., Четверушкин Б.Н. // Ж. вычисл. матем. и матем. физ. 2018. Т. 58. № 8. С. 20–29.
  5. 5. Рогов Б.В., Михайловская М.Н. // Матем. моделирование. 2008. Т. 20. № 1. С. 99–116.
  6. 6. Михайловская М.Н., Рогов Б.В. // Ж. вычисл. матем. и матем. физ. 2012. Т. 52. № 4. С. 672–695.
  7. 7. Rogov B.V. // Appl. Numer. Math. 2019. V. 139. P. 136–155.
  8. 8. Брагин М.Д., Рогов Б.В. // Ж. вычисл. матем. и матем. физ. 2021. Т. 61. № 11. С. 1759–1778.
  9. 9. Bragin M.D. // Appl. Numer. Math. 2022. V. 174. P. 112–126.
  10. 10. Брагин М.Д. // Матем. моделирование. 2022. Т. 34. № 6. С. 3–21.
  11. 11. Douglas J., Dupont T.F. // Numerical Solution of Partial Differential Equations II / ed. by B. Hubbard. Academic Press, 1971. P. 133–214.
  12. 12. Duchemin L., Eggers J. // J. Comput. Phys. 2014. V. 263. P. 37–52.
  13. 13. Wang H., Zhang Q., Wang S., Shu C.-W. // Sci. China Math. 2020. V. 63. P. 183–204.
  14. 14. Shu C.-W. // Advanced Numerical Approximation of Nonlinear Hyperbolic Equations / ed. by A. Quarteroni, V. 1697 of Lecture Notes in Mathematics. Springer, 1998. P. 325–432.
  15. 15. Daru V., Tenaud C. // Comput. Fluids. 2001. V. 30. P. 89–113.
  16. 16. Bragin M.D., Rogov B.V. // Appl. Numer. Math. 2020. V. 151. P. 229–245.
  17. 17. Wang Z., Zhu J., Tian L., Zhao N. // J. Comput. Phys. 2021. V. 429. P. 110006.
  18. 18. Sjögreen B., Yee H.C. // J. Comput. Phys. 2003. V. 185. P. 1–26.
  19. 19. Yee H.C., Sandham N.D., Djomehri M.J. // J. Comput. Phys. 1999. V. 150. P. 199–238.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library