RAS PresidiumДоклады Российской академии наук. Математика, информатика, процессы управления Doklady Mathematics

  • ISSN (Print) 2686-9543
  • ISSN (Online) 3034-5049

TO THE BIRMAN–KREIN–VISHIK THEORY

PII
10.31857/S2686954322600574-1
DOI
10.31857/S2686954322600574
Publication type
Status
Published
Authors
Volume/ Edition
Volume 509 / Issue number 1
Pages
54-59
Abstract
Let A ≥ mA > 0 be a closed positive definite symmetric operator in a Hilbert space ℌ, let \({{\hat {A}}_{F}}\) and \({{\hat {A}}_{K}}\) be its Friedrichs and Krein extensions, and let be the ideal of compact operators in ℌ. The following problem has been posed by M.S. Birman: Is the implication A–1 ∈ G ⇒ (\({{\hat {A}}_{F}}\) )–1 ∈ G(ℌ) holds true or not? It turns out that under condition A–1 ∈ G the spectrum of Friedrichs extension \({{\hat {A}}_{F}}\) might be of arbitrary nature. This gives a complete negative solution to the Birman problem.Let \(\hat {A}_{K}^{'}\) be the reduced Krein extension. It is shown that certain spectral properties of the operators (\({{I}_{{{{\mathfrak{M}}_{0}}}}}\) + \(\hat {A}_{K}^{'}\))–1 and P1(I + A)–1 are close. For instance, these operators belong to a symmetrically normed ideal G, say are compact, only simultaneously. Moreover, it turns out that under a certain additional condition the eigenvalues of these operators have the same asymptotic.Besides we complete certain investigations by Birman and Grubb regarding the equivalence of semiboubdedness property of selfadjoint extensions of A and the corresponding boundary operators.
Keywords
positive definite symmetric operator Friedrichs and Krein extensions compactness of resolvent asymptotic of spectrum
Date of publication
17.09.2025
Year of publication
2025
Number of purchasers
0
Views
13

References

  1. 1. Ахиезер Н.И., Глазман И.М. Теория линейных операторов в гильбертовых пространствах. Т. 2. Москва: Наука, 1978.
  2. 2. Alonso A., Simon B. // J. Operator Theory. 1980. V. 4. P. 251–270.
  3. 3. Ashbaugh M.S., Gesztesy F., Mitrea M., Teschl G. // Adv. Math. 2010. V. 223. 1372–1467.
  4. 4. Бирман М.Ш. // Матем. сб. 1956. Т. 38 (80). № 4. С. 431–450.
  5. 5. Бирман М.Ш., Соломяк М.З. Спектральная теория самосопряженных операторов в гильбертовом пространстве. Санкт-Петербург: Лань, 2010. 458 с.
  6. 6. Горбачук М.Л., Михайлец В.А. // Докл. Акад. наук СССР. 1976. Т. 226. № 4. С. 765–767.
  7. 7. Grubb G. // Ann. Scuola Norm. Sup. Pisa. 1968. V. 22. № 3, P. 425–513.
  8. 8. Grubb G. // J. Operator theory. 1983. V. 10. P. 9–20.
  9. 9. Grubb G. // J. Differential Equat. 2012. V. 252. P. 852–885.
  10. 10. Деркач В.А., Маламуд М.М. Теория расширений операторов и граничные задачи. Киев: Институт математики НАН Украины, 2017.
  11. 11. Derkach V.A., Malamud M.M. // J. Funct. Anal. 1991. V. 95. P. 1–95.
  12. 12. Hassi S., Malamud M.M., and de Snoo H.S.V. // Math. Nachr. 2004. V. 274–275. P. 40–73.
  13. 13. Крейн М.Г. // Матем. сб. 1947. Т. 20. С. 431–495.
  14. 14. Маламуд М.М. // Украинский Мат. Ж-л. 1992. Т. 44. № 2. С. 190–204.
  15. 15. Вишик М.И. // Труды ММО. 1952. Т. 1. С. 186–246.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library