RAS PresidiumДоклады Российской академии наук. Математика, информатика, процессы управления Doklady Mathematics

  • ISSN (Print) 2686-9543
  • ISSN (Online) 3034-5049

A GENERALIZATION OF THE FIRST BEURLING AND MALLIAVIN THEOREM

PII
10.31857/S2686954322600550-1
DOI
10.31857/S2686954322600550
Publication type
Status
Published
Authors
Volume/ Edition
Volume 509 / Issue number 1
Pages
83-86
Abstract
In this paper, we announce a result that generalizes the first Beurling–Malliavin theorem. In other words, we give a new sufficient condition on a function, which guarantees that it belongs to the Beurling–Malliavin class of majorants. It is also shown that the main result of this article is sharp in many senses.
Keywords
преобразование Фурье спектр преобразование Гильберта логарифмический интеграл теорема Берлинга–Мальявена
Date of publication
17.09.2025
Year of publication
2025
Number of purchasers
0
Views
12

References

  1. 1. Belov Y., Havin V. The Beurling–Malliavin Multiplier Theorem and its analogs for the de Branges spaces. Springer series: Operator theory, ed. Alpay. 2015. V. 1. P. 581–609.
  2. 2. Beurling A., Malliavin P. On Fourier transforms of measures with compact support, Acta Math. 1962. V. 107. P. 291–309.
  3. 3. Bourgain J., Dyatlov S. Spectral gaps without the pressure condition, Annals of Math. 2018. V. 187. P. 825–867.
  4. 4. De Branges L. Hilbert spaces of entire functions, Prentice-Hall, 1968.
  5. 5. Havin V., Mashreghi J. Admissible majorants for model subspaces of H2, Part I: Slow winding of the generating inner function, Canad. J. Math. 2003. V. 55. Issue 6. P. 1231–1263.
  6. 6. Havin V., Mashreghi J. Admissible majorants for model subspaces of H2, Part II : Fast winding of the generating inner function, Canad. J. Math. 2003. V. 55. Issue 6. P. 1264–1301.
  7. 7. Kislyakov S., Perstneva P. Indicator functions with uniformly bounded Fourier sums and large gaps in the spectrum, Journal of Fourier Analysis and Applications. 2022.
  8. 8. Makarov N., Poltoratski A. Beurling-Malliavin theory for Toeplitz kernels, Invent. Math. 2010. V. 180. № 3. P. 443–480.
  9. 9. Mashregi D., Nazarov F., Khavin V. The Beurling–Malliavin multiplier theorem: The seventh proof, Algebra i Analiz. 2005. V. 17. № 5. P. 3–68.
  10. 10. Nazarov F., Olevskii A. A Function with Support of Finite Measure and “Small” Spectrum, 50 Years with Hardy Spaces. In: Baranov A., Kisliakov S., Nikolski N. (eds) 50 Years with Hardy Spaces. Operator Theory: Advances and Applications, V. 261. Birkhäuser.
  11. 11. Poltoratski A. Spectral gaps for sets and measures, Acta Math. 2012. V. 208. № 1. P. 151–209.
  12. 12. Redheffer H. Completeness of sets of complex exponentials, Adv. Math. 1977. V. 24. Issue 1. P. 1–62.
  13. 13. Vasilyev I. On the multidimensional Nazarov lemma, Proc. Amer. Math Soc. 2022. V. 150. № 4. P. 1601–1611.
  14. 14. Vasilyev I. On the first Beurling–Malliavin Theorem, https://arxiv.org/pdf/2203.16674.pdf. 2022.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library