- PII
- 10.31857/S2686954322600550-1
- DOI
- 10.31857/S2686954322600550
- Publication type
- Status
- Published
- Authors
- Volume/ Edition
- Volume 509 / Issue number 1
- Pages
- 83-86
- Abstract
- In this paper, we announce a result that generalizes the first Beurling–Malliavin theorem. In other words, we give a new sufficient condition on a function, which guarantees that it belongs to the Beurling–Malliavin class of majorants. It is also shown that the main result of this article is sharp in many senses.
- Keywords
- преобразование Фурье спектр преобразование Гильберта логарифмический интеграл теорема Берлинга–Мальявена
- Date of publication
- 17.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 12
References
- 1. Belov Y., Havin V. The Beurling–Malliavin Multiplier Theorem and its analogs for the de Branges spaces. Springer series: Operator theory, ed. Alpay. 2015. V. 1. P. 581–609.
- 2. Beurling A., Malliavin P. On Fourier transforms of measures with compact support, Acta Math. 1962. V. 107. P. 291–309.
- 3. Bourgain J., Dyatlov S. Spectral gaps without the pressure condition, Annals of Math. 2018. V. 187. P. 825–867.
- 4. De Branges L. Hilbert spaces of entire functions, Prentice-Hall, 1968.
- 5. Havin V., Mashreghi J. Admissible majorants for model subspaces of H2, Part I: Slow winding of the generating inner function, Canad. J. Math. 2003. V. 55. Issue 6. P. 1231–1263.
- 6. Havin V., Mashreghi J. Admissible majorants for model subspaces of H2, Part II : Fast winding of the generating inner function, Canad. J. Math. 2003. V. 55. Issue 6. P. 1264–1301.
- 7. Kislyakov S., Perstneva P. Indicator functions with uniformly bounded Fourier sums and large gaps in the spectrum, Journal of Fourier Analysis and Applications. 2022.
- 8. Makarov N., Poltoratski A. Beurling-Malliavin theory for Toeplitz kernels, Invent. Math. 2010. V. 180. № 3. P. 443–480.
- 9. Mashregi D., Nazarov F., Khavin V. The Beurling–Malliavin multiplier theorem: The seventh proof, Algebra i Analiz. 2005. V. 17. № 5. P. 3–68.
- 10. Nazarov F., Olevskii A. A Function with Support of Finite Measure and “Small” Spectrum, 50 Years with Hardy Spaces. In: Baranov A., Kisliakov S., Nikolski N. (eds) 50 Years with Hardy Spaces. Operator Theory: Advances and Applications, V. 261. Birkhäuser.
- 11. Poltoratski A. Spectral gaps for sets and measures, Acta Math. 2012. V. 208. № 1. P. 151–209.
- 12. Redheffer H. Completeness of sets of complex exponentials, Adv. Math. 1977. V. 24. Issue 1. P. 1–62.
- 13. Vasilyev I. On the multidimensional Nazarov lemma, Proc. Amer. Math Soc. 2022. V. 150. № 4. P. 1601–1611.
- 14. Vasilyev I. On the first Beurling–Malliavin Theorem, https://arxiv.org/pdf/2203.16674.pdf. 2022.