Президиум РАНДоклады Российской академии наук. Математика, информатика, процессы управления Doklady Mathematics

  • ISSN (Print) 2686-9543
  • ISSN (Online) 3034-5049

ОБ АСИМПТОТИКЕ АТТРАКТОРОВ СИСТЕМЫ НАВЬЕ–СТОКСА В АНИЗОТРОПНОЙ СРЕДЕ С МЕЛКИМИ ПЕРИОДИЧЕСКИМИ ПРЕПЯТСТВИЯМИ

Код статьи
10.31857/S2686954322600549-1
DOI
10.31857/S2686954322600549
Тип публикации
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 512 / Номер выпуска 1
Страницы
42-46
Аннотация
В работе рассматривается двумерная система уравнений Навье–Стокса в среде с анизотропной переменной вязкостью и периодическими мелкими препятствиями. Доказано, что траекторные аттракторы этой системы стремятся в определенной слабой топологии к траекторным аттракторам усредненной системы уравнений Навье–Стокса с дополнительным потенциалом в среде без препятствий.
Ключевые слова
аттракторы усреднение система уравнений Навье–Стокса нелинейные уравнения слабая сходимость перфорированная область быстро осциллирующие члены анизотропная среда
Дата публикации
01.05.2023
Год выхода
2023
Всего подписок
0
Всего просмотров
31

Библиография

  1. 1. Chepyzhov V.V., Vishik M.I. Non-autonomous 2D Navier–Stokes system with singularly oscillating external force and its global attractor // J. Dyn. Diff. Eqns. 2007. V. 19. P. 655–684.
  2. 2. Chepyzhov V.V., Vishik M.I. Evolution equations and their trajectory attractors // J. Math. Pures Appl. 1997. V. 76. № 10. P. 913–964.
  3. 3. Самохин В.Н., Фадеева Г.М., Чечкин Г.А. Уравнения пограничного слоя для модифицированной системы Навье–Стокса // Труды семинара им. И.Г. Петровского. Вып. 28. М.: Изд-во Моск. ун-та, 2011. С. 329–361.
  4. 4. Chechkin G.A., Chechkina T.P., Ratiu T.S., Romanov M.S. Nematodynamics and Random Homogenization // Applicable Analysis. 2016. V. 95. № 10. P. 2243–2253.
  5. 5. Бекмаганбетов К.А., Чечкин Г.А., Чепыжов В.В. Сильная сходимость аттракторов системы реакции–диффузии с быстро осциллирующими членами в ортотропной пористой среде // Известия РАН. 2022. Т. 86. № 6. С. 3–34.
  6. 6. Bekmaganbetov K.A., Chechkin G.A., Chepyzhov V.V. “Strange Term” in Homogenization of Attractors of Reaction–Diffusion Equation in Perforated Domain // Chaos, Solitons & Fractals. 2020. V. 140. Art. No 110208.
  7. 7. Бекмаганбетов К.А., Толеубай А.М., Чечкин Г.А. Об аттракторах системы уравнений Навье–Стокса в двумерной пористой среде // Проблемы математического анализа. 2022. Т. 115. С. 15–28.
  8. 8. Бабин А.В., Вишик М.И. Аттракторы эволюционных уравнений. М.: Наука, 1989.
  9. 9. Chepyzhov V.V., Vishik M.I. Attractors for equations of mathematical physics. Providence (RI): Amer. Math. Soc., 2002.
  10. 10. Temam R. Navier–Stokes equations: Theory and numerical analysis. Amsterdam–New York–Oxford: North Holland, 1979.
  11. 11. Temam R. Infinite-dimensional dynamical systems in mechanics and physics. Applied Mathematics Series. V. 68. New York (NY): Springer-Verlag, 1988.
  12. 12. Conca C. Mathematical modeling of the steam-water condensation in a condenser. Large-scale computations in fluid mechanics, Part 1 (La Jolla, Calif., 1983), 87–98, Lectures in Appl. Math., 22-1, Amer. Math. Soc., Providence, RI, 1985.
  13. 13. Conca C. Numerical results on the homogenization of Stokes and Navier-Stokes equations modeling a class of problems from fluid mechanics // Comput. Methods Appl. Mech. Engrg. 1985. V. 53. № 3. P. 223–258.
  14. 14. Conca C. On the application of the homogenization theory to a class of problems arising in fluid mechanics. // J. Math. Pures Appl. 1985. V. 64 (9). № 1. P. 31–75.
  15. 15. Беляев А.Г., Пятницкий А.Л., Чечкин Г.А. Усреднение в перфорированной области с осциллирующим третьим краевым условием // Математический сборник. 2001. Т. 192. № 7. С. 3–20.
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека